

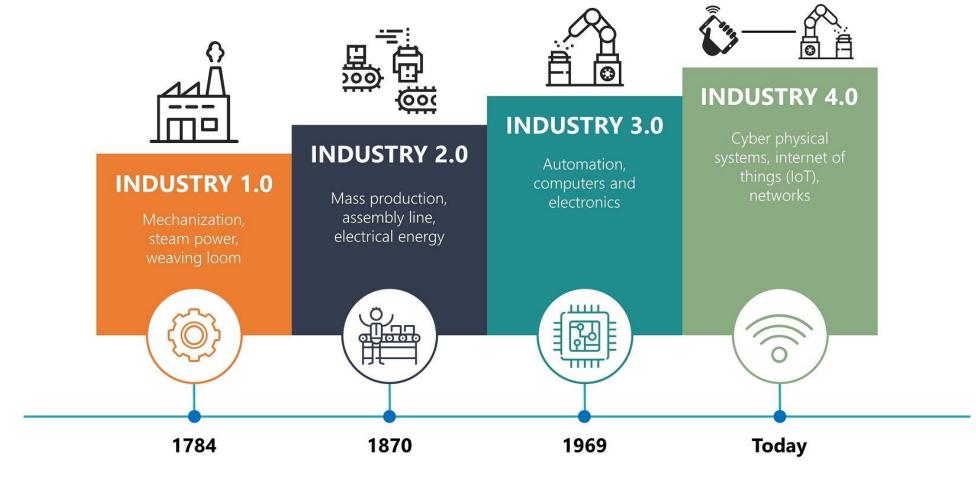
Metrolojinin Dijitalleşmesi Digitalization of Metrology

TURKLAB Uygunluk Değerlendirme Konferansı

3. Sürdürülebilirlik: Yeşil Dönüşüm ve Dijitalleşme

Dr. Erkan DANACI TÜBİTAK UME / Dijitalleşme Çalışma Grubu Koordinatörü erkan.danaci@tubitak.gov.tr

Content


- Concept of Digitalization
- Digital Transformation in Metrology
- BIPM CIPM Digitalization Actions
- EURAMET Digitalization Actions
- Scientific Activities on Digitalization
- TUBITAK UME Digitalization Working Group
- Digital Calibration Certificate

Metrology in the Digital Age

Concept of Digitalization

Digital Transformation Need in All Deney Laboratuvarlari Derneği 2 Cycl Sectors

Changing World and Needs

- Time abbreviation
- Cost reduction
- Increasing Production / Productivity
- Advantage of increased amount of data (?)
- Automatic data processing / resource management possible

Digital Transformation in Metrology

· Digital Transformation is necessary in metrology as in every field.

 In Industry – Metrology cooperation, it is necessary to be a guide, pioneer and determinant of the digital transforming world.

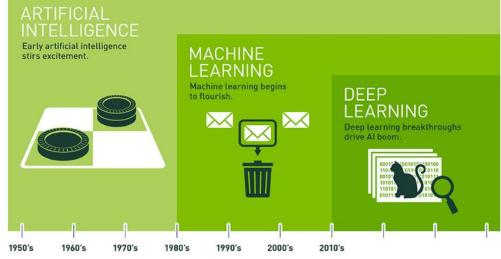
Digitization, Digitalization and Digital Transformation


- **Digitization:** In short, it is the process of converting the information in physical documents from analog to digital.
 - Scanning the document on paper, converting it to PDF and transferring it to electronic media
- Digitalization: It is the process of using digitized or digitally produced information to work more simply and efficiently.
 - Automatic issuance of certificate using measurement results in digital media
- Digital transformation: It is the adoption of digital technology, changing the way business is run. Increasing efficiency and value and applying innovation to the business model.

Starting from the automatic measurement, creating a certificate by performing the entire calibration process in digital environment, delivering it in electronic environment, and even adapting the certificate (DCC) to its own processes by processing the certificate in electronic environment

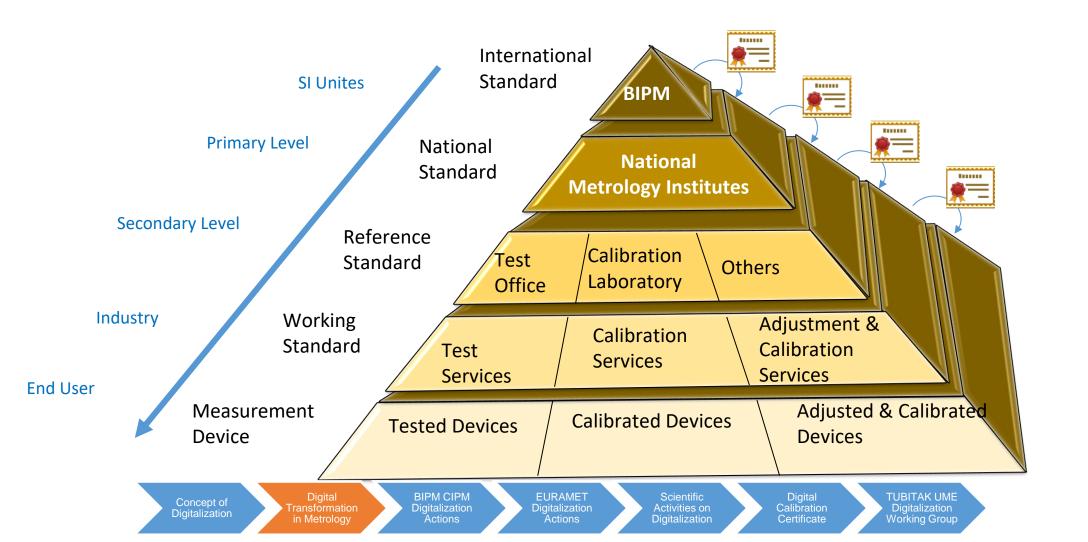
- Digital Twins, is a virtual model of a product, process, or service. It
 means creating a virtual twin, the exact equivalent of a physical
 object.
 - The virtual copy can be a car, a machine, a train or even a jet engine
 - Virtual twins are used for simulation purposes before producing real devices
 - Digital twins are not only used in manufacturing, but also influence the development of technologies such as the internet of things (IOT), artificial intelligence (AI) and data analytics

Scientific


Activities on

Digitalization

Artificial Intelligence, Machine and Deep Learning


- All is the ability of a computer or computer-controlled device/robot to perform various activities similar to intelligent creatures.
- Machine Learning, refers to a machine learning to use large datasets instead of coded rules.
 - **Supervised Learning**, involves using labeled datasets with inputs and expected outputs.
 - **Unsupervised Learning**, It is the task of machine learning that uses datasets that do not have a specific structure.
- Deep Learning, It allows us to train artificial intelligence to predict outputs with a given dataset. Both supervised and unsupervised learning can be used to train artificial intelligence.

Industry Trends and Challenges in Metrology in the Digital Transformation Process

Industry Trends and Challenges in Metrology in the Digital Transformation Process

- Current Industrial Trend Numerous sensors become available
 - Computing capacity increased
 - ML (Machine Learning Artificial Intelligence) algorithm has become more widely applicable
 - There are concerns about the reliability of the sensor data and algorithm output
- Some metrology challenges for the Factory of the Future
 - Data collection and cleaning
 - Data Merge
 - Network synchronization and scheduling
 - **Rrepetitive measurements**
 - Network design for sensors with different quality (resolution/uncertainty) output

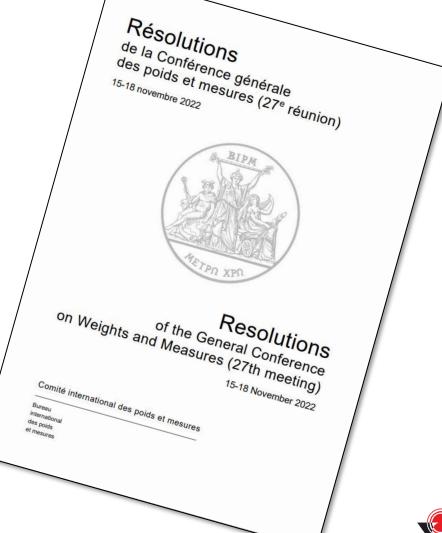
Digital Technologies in Industrial Measurements (Examples)

- One click MEMS temperature sensor calibration (SPEA, Italia)
- Dynamic calibration of MEMS accelerometers (PTB, Germany)
- Machine Learning and Data Analysis at ZeMA Mechatronics and Automation Technology Center (ZeMA, Germany)
- Container Weighing System (DCC) (Aalto University, Finland)

BIPM CIPM Digitalization Tasks

Mandate by the 27th CGPM

Resolution 2


"On the global digital transformation and the International System of Units"

The 27th CGPM encourages

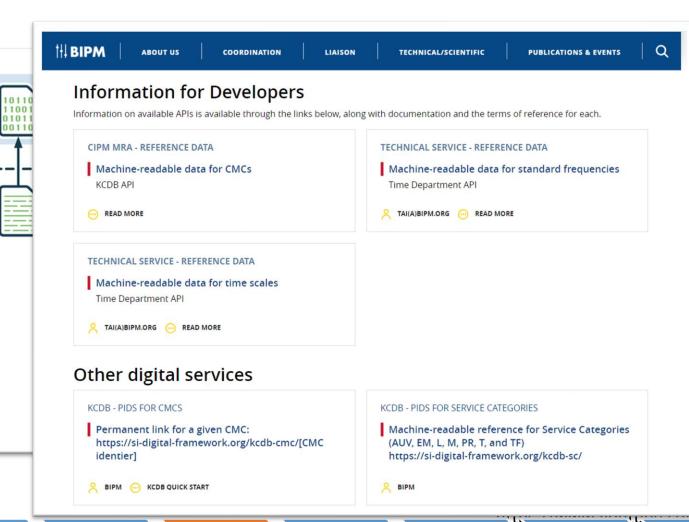
- the CIPM to continue its outreach and engagement initiatives to ensure that the Metre Convention naturally extends its role as the globally accepted anchor of trust for metrology into the digital era,
- the CIPM to undertake the development and promotion of an SI
 Digital Framework, ...

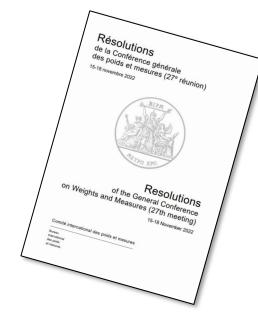
Concept of

BIPM 27th CGPM Resolution 2

Résolutions de la Conférence générale 15-18 novembre 2022 On Weights and Measures (27th meeting) Contra international des poids et measures 15-18 Novembre 2022 Contra international des poids et measures Accessiones

The 27th CGPM Summary


- BIPM is working on several building blocks to establish a SI Digital Framework
- Prototype of machine readable SI Brochure is being tested with other modules
- Next steps include references for Quantities Interaction with experts of the specific field required



turklob BIPM Activities on Digitalization Kalibrasyon ve Deney Laboratuvariari Dernegi 2004

for

C (and each required, for le link to the

binar on Digital References ology

by the BIPM in conjunction with SciDataCon 2023, took place on October 12. As nars, this event was dedicated to the new digital services developed by the BIPM, ative Committees for Photometry and Radiometry (CCPR) and Ionizing Radiation available on the BIPM YouTube channel.

ebinars will be organized to present and discuss the progress of digital d within the Consultative Committees for Length (CCL) and Time and Frequency ork envisaged to develop a machine-readable version of the VIM.

----\/\usepartsh?v=NAKKMTs4 YA

Bureau

International des

Poids et ↓ Mesures

EURAMET Digitalization Tasks

European Partnership on Metrology Work Programme Call Scope: Metrology support for Digital Transformation (2022-4 M€), 2024-13 M €)

...The Targeted Programme on Metrology for Digital Transformation (TP DIT) complements other planned TP's targeting at metrology challenges in the areas of **Green Deal, Health, Industrial Innovation, Fundamental Metrology, Integrated European Metrology, and Standardization/Regulation**. It addresses specific digital topics that have a generic or cross-disciplinary character....

EPM (*European Partnership on Metrology*) project call as digital transformation in 2022 and 2024 (https://www.euramet.org/research-innovation/metrology-partnership)

Concept of

Transformation

EURAMET Digitalization Tasks

Trustworthy virtual experiments and digital twins

Short Name: ViDiT, Project Number: 22DIT01

A dashboard of augmented virtual reality

COORDINATOR

Sonia Schmelter (PTB)

Supporting Europe's digital transformation

Simulation models, that can mimic or replicate physical systems, are used in a wide range of industries to design, test and develop products. As well as drastically reducing production time and cost per part, they can reduce energy usage and material wastage, helping reduce

PARTICIPATING EURAMET NMIS AND DIS

GUM (Poland)

LCOE (Spain)

LNE (France)

MIKES (Finland)

PTB (Germany)

UME (Türkiye)

VSL (Netherlands)

OTHER PARTICIPANTS

Dutch United Instruments B.V. (Netherlands)

Ecole Normale Supérieure Paris-Saclay (France)

FLEXIM Flexible Industriemeßtechnik GmbH (Germany)

Fundacion Tekniker (Spain)

GEOMNIA (France)

Ideko S.Coop (Spain)

Instituto Nacional de Tecnología Industrial (Argentina)

KROHNE Messtechnik GmbH (Germany)

Mahr GmbH (Germany)

Politechnika Krakowska (Poland)

Politecnico di Torino (Italy)

SICK Engineering GmbH (Germany)

Universidad Poltécnica de Madrid (Spain)

INFORMATION

PROGRAMME

Metrology Partnership

FIELD

Digital Transformation

CALL 2022

DURATION

2023-2026

TOTAL EU CONTRIBUTION (IN M €) 2.047

TUBITAK UME Joint Project of EPM 2022 call

22DIT01 VIDIT. Trustworthy virtual experiment's and digital twins

https://www.euramet.org/research-innovation/searchresearch-projects/details/project/trustworthy-virtualexperiments-and-digital-twins

turklob EURAMET Digitalization Tasks

Interdisciplinary Metrology

- TC-IM (Interdisciplinary Metrology Technical Committee)
 - Metrology for Digitizing (M4D)
 - **Projects on Digitalization**

Code	Start Date	Name	Coordinator	Status	Туре
1551	2022-05-22	Challenges and opportunities in sensor network metrology	METAS	in progress	Research
1449	2018-06-01	Research data management in European metrology (Formerly including the European Open Science Cloud)	РТВ	in progress	Research
1448	2018-06-01	Development of digital calibration certificates	РТВ	in progress	Research

TUBITAK UME

Working Group

WORKING GROUP ON METROLOGY FOR DIGITAL TRANSFORMATION

The EURAMET TC-IM working group 'Metrology for Digital Transformation' (WG M4D) is bringing together the expertise of EURAMET Members specialised in data management, digital certificates and processes, Internet of Things and sensor networks.

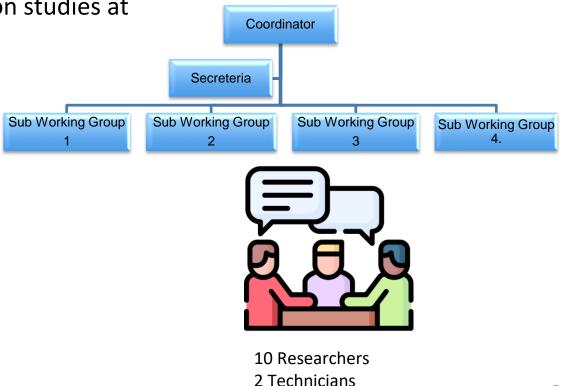
In 2020, the European Commission (EC) published the strategy 'Shaping Europe's digital future', alongside its European industry strategy, data strategy and the White Paper on Artificial Intelligence.

The EC's digital future objectives are centered around developing a technology that works to support a fair and competitive economy, as well as an open, democratic and sustainable society. According to the EC's vision, this can only be achieved through a digital transformation of existing and established processes, in addition to securing and strengthening European digital leadership.

The working group M4D aims to support EURAMET in its mission to implement a strategic digital transformation that is aligned both with the aims of the European Commission, as well as the relevant needs of EURAMET members.

Concept of

Scientific Activities


turklob TUBITAK UME Digitlization Working Group

On 08.09.2023, the "TÜBİTAK UME Digitalization Working Group" (DÇG) was established to coordinate the digitalization studies at TÜBİTAK UME.

Contact:

ume.dcg@tubitak.gov.tr

2 Intern students

TÜBİTAK UME Digitalization Working Group

TÜBİTAK UME Digital Metrology Pilot Project and Dissemination at Turkiye for 5 years (between 2024 and 2028)

The TÜBİTAK UME Digital Metrology Pilot Project marks a transformative step towards enhancing the efficiency and precision of metrology practices in Turkiye.

The objectives of the TÜBİTAK UME digitalization pilot project :

- Obj1. Transferring Metrological Scientific Outputs to Digital Media
- Obj2. Creating the Digital Calibration Certificate (DCC) and Digital Test Reports (DTR) and Sharing them an a digital platform
- Obj3. Creating smart Calibration Systems with Digital Measurement Device Twins

O1. Transferring Metrological Outputs to Digital Media

The sub-task steps planned within the scope of the Transferring Metrological Scientific Outputs to Digital Media objective are determined as follows.

- 1.1. **Transferring the publications** produced by institutions and organizations interested in Scientific and Industrial Metrology and for the benefit of institutions and organizations carrying out metrological activities in our country **into digital media**. (2025)
- 1.2. Making the demand and offer systems of calibration and experiment services offered by TÜBİTAK UME, which is interested in Scientific Metrology in our country, accessible digitally. (2026)
- 1.3. Establishing a mechanism to share the digital forms of Calibration Certificates (DCC) and Test Reports (DTR) with the relevant parties (2027)


O2. Creating the DCC and DTR

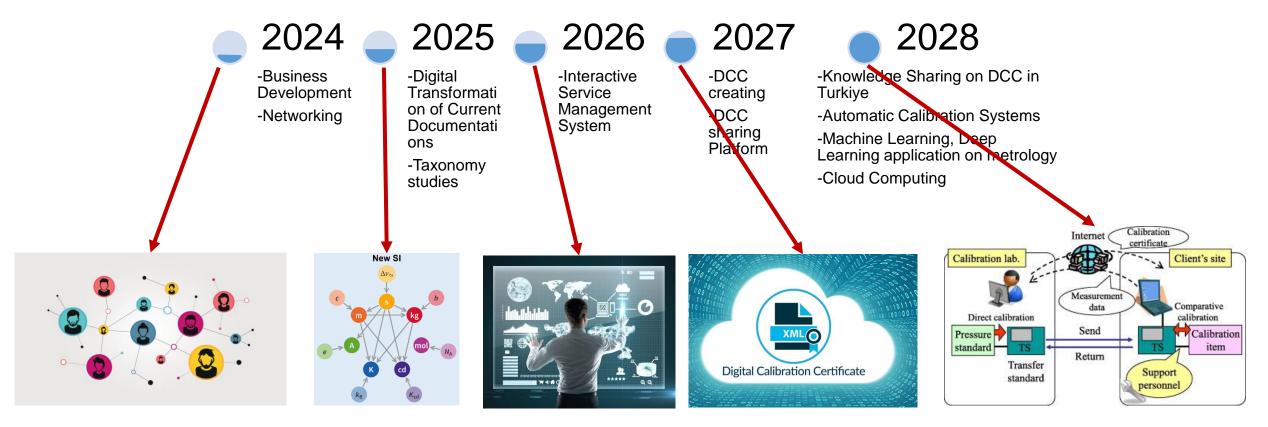
The sub-task steps planned within the scope of the Creating the Digital Calibration Certificate (DCC) and digital Test Reports (DTR) objective are determined as follows.

- 2.1. Creating and publishing the taxonomies of the quantities measured in our country according to the international measurement system (2025)
- 2.2. Creation of machine-readable format of Calibration Certificate and Test reports (DCC / DTR) (2027)
- 2.3. Dissemination of digital formats of Calibration Certificates and Test Reports within the country (2028)

O3. Creating Smart Calibration Systems with Digital Measurement Device Twins

The sub-task steps planned within the scope of the Creating smart Calibration Systems with Digital Measurement Device Twins objective are determined as follows.

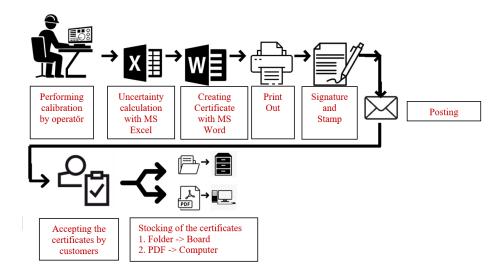
3.1. Creating digital twins of devices (2028)


Concept of

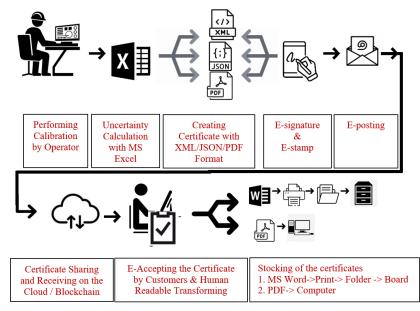
- 3.2. **Establishing Remote and Automatic Calibration Systems** for Basic Measurement Quantities (2028)
- 3.3. Application of machine and deep learning methods to automatic calibration and experiment systems (2028)
- 3.4. **Developing open-source software** and device drivers for automatic **calibration** and uncertainty calculations (2028)

turklab Outputs of Digital Metrology Pilot Project

EURAMET


Digitalization

Actions


Digital Calibration Certificate (DCC)

Current workflow in calibration certificate creation:

- Error prone
- Time consuming because of manual processing
- Lacks the extra functional gains to come when using DCC

How DCC works:

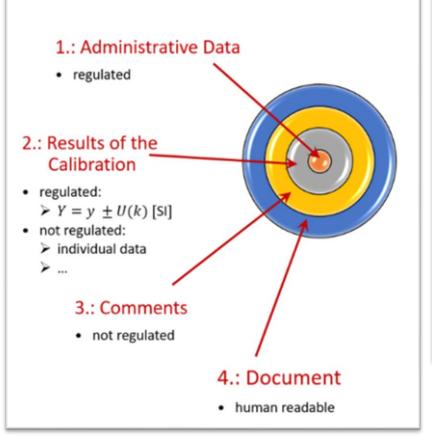
- It is possible for the corrected values to be used directly by SCADA systems
- Overall time required is shorter due to automation
- Integration is possible

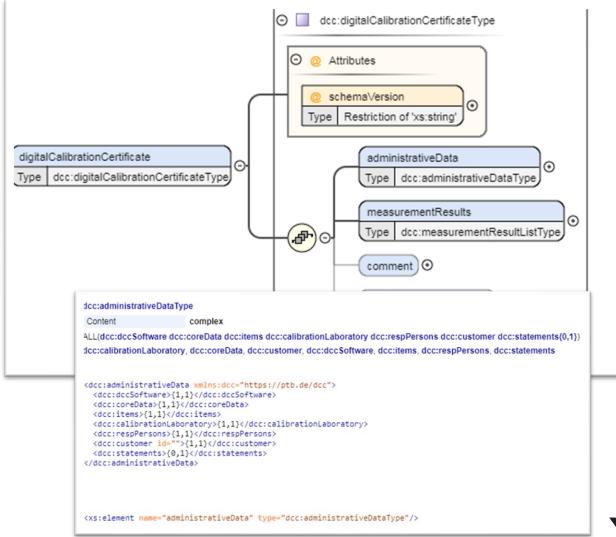
Digital Calibration Certificate (DCC)

What is DCC?

Concept of

Transformation


in Metrology


DCC is in electronic form (in XML, JSON- and even PDF etc. formats), which contains all the information contained in the current calibration certificates, plus all information including the measurement results (kept digitally), and can contain the certificate in the form of pdf, etc. and is electronically signed digital file that can be processed by machine and used in digital workflows, whose integrity and immutability are well guaranteed.

turk lob Structure of DCC

Signing and distribution of DCC

DCC must include cryptographic signatures for integrity, authenticity and, where necessary, confidentiality and ensure security

EURAMET

Digitalization

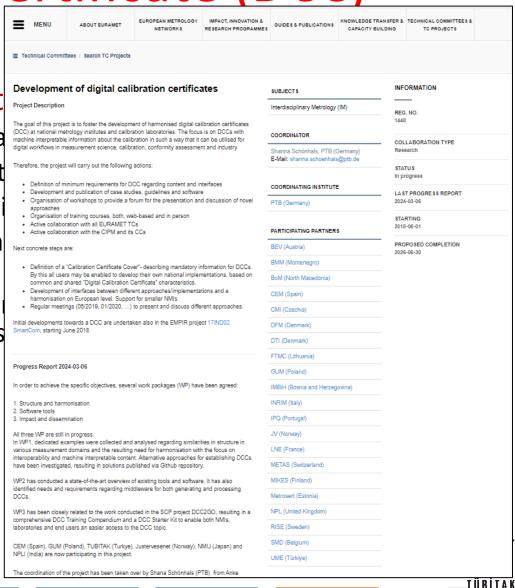
Actions

Concept of

Digitalization

Digital Calibration Certificate (DCC)

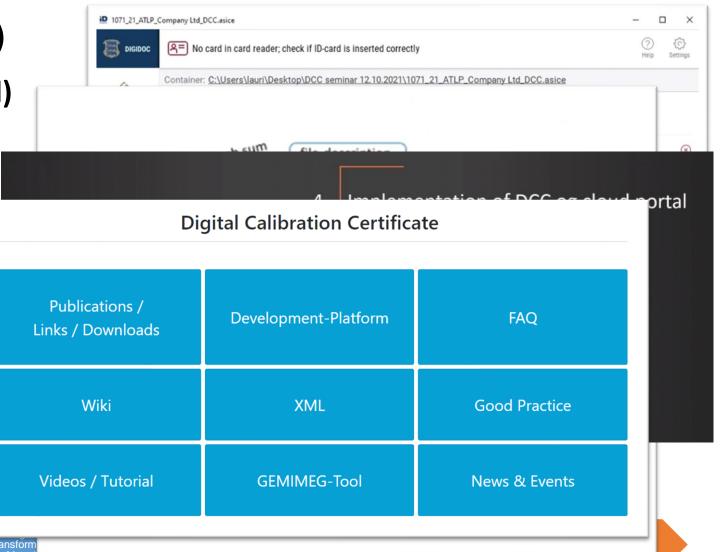
- Current status in DCC:
 - TC-IM Project 1448 development of Digital Calibration Certificates
 - Part of Digital Transformation in Metrology
 - The draft structure has been formed, but we have a long way to go for a common structure.
 - There are some institutes currently working



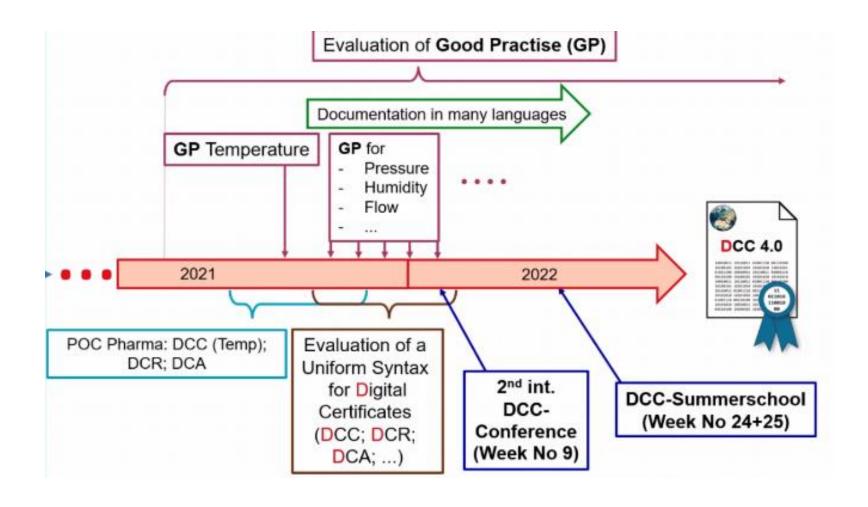
Digital Calibration Certificate (DCC)

- TC-IM 1448 DCC common requirement
 - Must be machine readable (without huma
 - It must be directly or indirectly traceable t
 - Must have proof of metrological traceabili
 - It must contain additional information (da numerical calibration information, etc.)
 - Include cryptographic signatures for integ necessary, confidentiality and guarantee \$

TÜBİTAK UME is participant of this project



DCC related work


- Metrosert (Estonia)
- Metas (Switzerland)
- DFM (Denmark)
- PTB (Germany)

Concept of

EURAMET

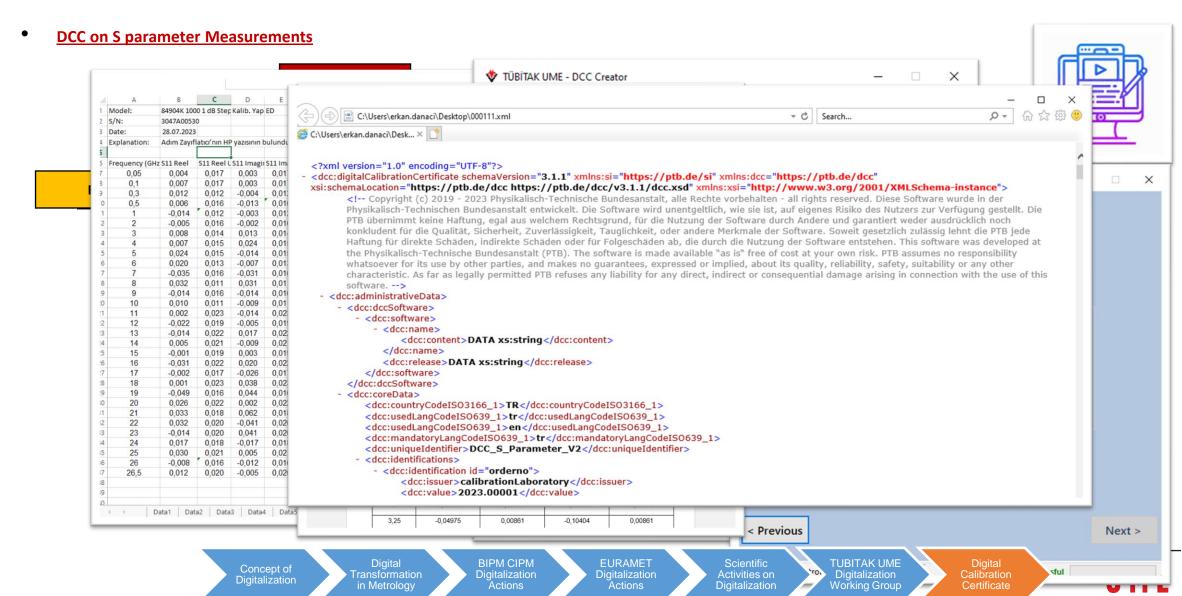
Digitalization

Actions

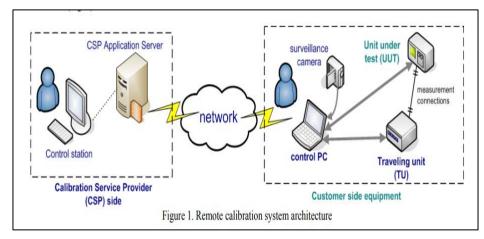
turk laboratural art Dernegi XML Based First DCC at TUBITAK UME

DCC Process

Creating of Measuremtn Results

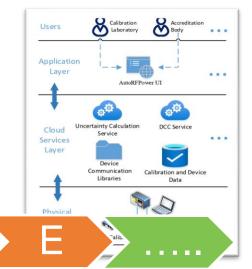

Development of Machine and Human Readable **DCC** Converter

DCC Sharing



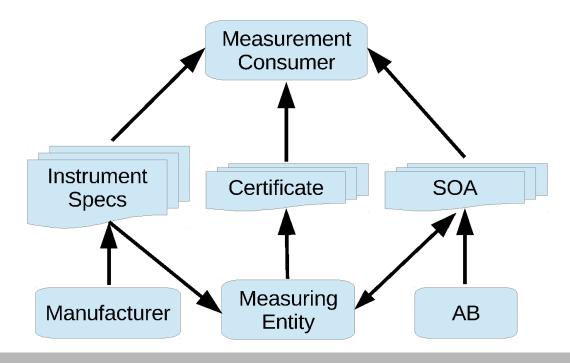
turklob XML Based First DCC at TUBITAK UME

Creating Digital Twins of Measurement Devices

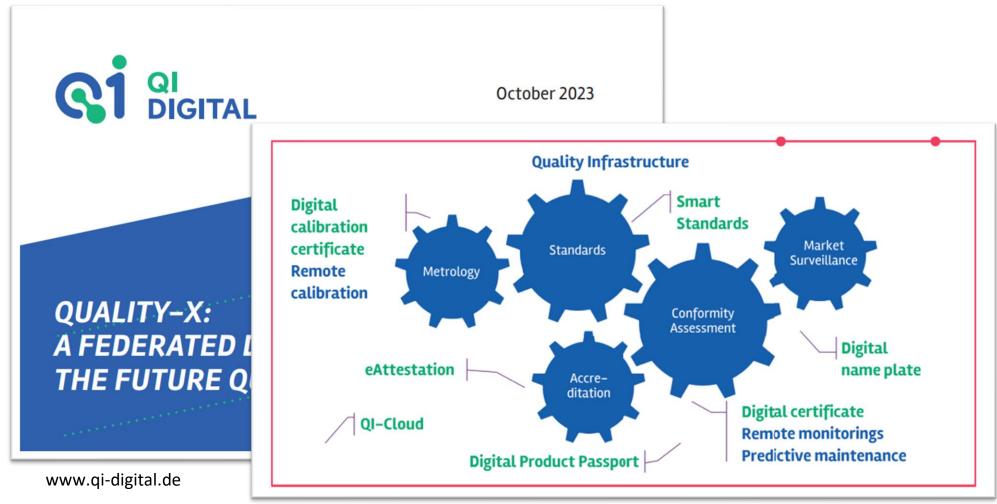


Jurcevic, Marko & Hegedus, Hrvoje & Malarić, Roman & Zeba, Hrvoje. (2008). Generic Environment for internet-enabled calibration services.

Uncertainty calculation on metrology clouds



Providing the calibration and test as Remote



- BIPM's KCDB, M-Layer
- **European Metrology Cloud**

- NMI's Digitization Strategy
- MSL, APMP, others

F > U > T > U > R > E >

sustainable metrology

TÜBİTAK NATIONAL METROLOGY INSTITUTE

Thank you for your attention

erkan.danaci@tubitak.gov.tr

ume.dcg@tubitak.gov.tr

